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Introduction

Background
At present, Pre-training model plays an key role in

many neural language processing tasks. However,
Transformer, and its variant model BERT, limit the
effective deployment of the model to limited resource
setting.

The compression of large nature pre-training
language model has been an essential problem in
NLP research.

 There are some compression methods only study
the compression of embedding layers and some
methods can not be integrated into the model after
compressing.

Research Questions
 To linearly represent a self-attention by a group

of basic vectors
 To compress multi-head attention in Transformer
 After compressing, it can be directly integrated

into the encoder and decoder framework of
Transformer

Our Methods

 Low-rank decomposition

 Parameters sharing
 Using Tucker decomposition formulation is to

construct Single-block attention
 Using Block-term decomposition + Parameters

sharing formulation is to construct multi-head
mechanisms(Multi-linear attention)

Basic Ideas

Conclusion 
 Providing a novel self-attention method, namely Multi-linear

attention.
 Combining two compression ideas, parameters sharing and low-

rank decomposition.
 Achieving higher compression ratio and better experimental results

in language modeling

Let 𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛 be basis vectors from the vector 𝑆𝑆. Assume that 
𝑄𝑄,𝐾𝐾,𝑉𝑉 can be linearly represented by this set of  basis vector. 
The output of the attention function can be represented by a 
linear combination of the set of  these basis vectors.

𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑄𝑄,𝐾𝐾,𝑉𝑉 = 𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛 𝑀𝑀
where 𝑀𝑀 ∈ ℝ𝑁𝑁×𝑑𝑑is a coefficient matrix, and d is a dimension 
of these matrices.

Tensoried Transformer

Main Theorem 

Experimental Results

Main References

Related Corollary 
Single-block attention can reconstruct the self  attention function 
by the summing over the tensor according to the second index.
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 Our method is mainly experimented on 
three language model datasets, PTB, 
WikiText-103, and One-Billion, 
respectively. The lower the PPL, the 
better the model is.

 Our methods achieve a more better 
results with fewer parameters.
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Figure: 𝑐𝑐 is the Single-block attention using Tucker decomposition, (𝑏𝑏) is the 
Multi-linear attention based on Block-term tensor decomposition.
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 Multi-linear Attention by Block-term Decomposition 
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