

A Tensorized Transformer for Language Modeling

Tianjin University

Xindian Ma, Peng Zhang*, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song, Ming Zhou

NeurIPS 2019

Background

- Transformer has led to breakthroughs in natural language processing tasks.
- Transformer, and its variant model BERT, limit the effective deployment of the model to limited resource setting.
- Some compression methods have been proved.
 - TT-embedding
 - BTRNN
 - Tensorizing Neural Networks

Some Compression Methods

- TT-Embedding [1]
 - Tensor-Train decomposition is used to compress the embedding layer (look-up table).
- BTRNN [2]
 - Block-term tensor decomposition is used to compress the input layers in LSTM
- Tensorizing Neural Networks [3]
 - Tensor Train format is used to compress the fully-connected layers.

[1] Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787, 2019
[2] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu. Learning compact recurrent neural networks with block-term tensor decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9378–9387, 2018.
[3] Novikov A, Podoprikhin D, Osokin A, et al. Tensorizing neural networks[C]//Advances in neural information processing systems. 2015: 442-450.

Problem Formulation

- The goals are:
 - To linearly represent a self-attention by a group of basic vectors
 - To compress multi-head attention in Transformer
 - After compressing, it can be directly integrated into the encoder and decoder framework of Transformer

Methods

Basic Ideas

- Low-rank decomposition
- Parameters sharing

Using Tucker decomposition formulation is to construct Single-block attention

Using Block-term decomposition + Parameters sharing formulation is to construct multi-head mechanisms(Multi-linear attention)

Transformer Language Modeling

Scaled Dot Production Attention

• Attention(Q, K, V) = softmax
$$\left(\frac{QK^T}{\sqrt{d}}\right)V$$

Multi-head Attention

Multi-group parameters

•
$$MultiHeadAttention(Q, K, V) = Concat(head_1, \cdots, head_k)W^o$$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

Linear Representation

• **Theorem:** "Scaled Dot Production Attention" can be represented by a linear combination of a set of basis vectors.

•
$$Attention(Q, K, V) = (e_1, \cdots, e_n)M$$

• where $M \in \mathbb{R}^{n \times d}$ is a coeffcient matrix.

Tucker Decomposition

Single-Block Attention

• is the outer product.

/

$$Attention_{\text{TD}}(\mathcal{G}; Q, K, V) = \mathcal{G} \cdot_1 Q \cdot_2 K \cdot_3 V$$
$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{m=1}^{M} \mathcal{G}_{ijm} Q_i \circ K_j \circ V_m$$

Single-Block Attention in Transformer

Lower-Rank Decomposition

• The Core-tensor \mathcal{G} is defined as follows.

•
$$G_{ijm} = \begin{cases} rand(0,1), & i = j = m \\ 0 & otherwise \end{cases}$$

• In this case , it can be set as I = J = M = R

• R is the Rank.

The time complexity of Single-block attention is $\mathcal{O}(N^3)$. The time complexity of Scaled dot production attention is $\mathcal{O}(N^2d)$.

Reconstruction for Scaled dot product attention

Corollary: Scaled dot product attention can be reconstructed by Single block attention

• Attention(Q, K, V)_{i,m} =
$$\sum_{j=1}^{J} Attention_{TD}(G; Q, K, V)_{i,j,m}$$

• where *i*, *j* and *m* are the indices of the single – block attention's ouput.

Graphing of Reconstruction

Figure 1: Tensor \mathcal{A} is a 3-order tensor, which represents the Single-block attention in the left. $\mathcal{A}_{i,j,k}$ is the entry of the tensor \mathcal{A} . In the right, the graph represents that the summing of tensor slices which is from the tensor splitting in index j.

How to Get Richer Representation

- Tensor Split
- Matrices Concat

Tensor Split

Matrices Concat

Multi-linear Attention by Block-term Decomposition

- It is important to constructed the multi-head mechanism for modeling long-range dependency.
- How to design the model with higher compression ratios?
 - 1) Block-term decomposition (method)
 - 2) Parameters sharing (idea)

Block-term Decomposition

Chen Y, Jin X, Kang B, et al. Sharing Residual Units Through Collective Tensor Factorization To Improve Deep Neural Networks[C]//IJCAI. 2018: 635-641.

Multi-linear Attention by Block-term Decomposition

In order to construct the multi-head mechanism, Multi-linear attention can be formulated as follows:

$$MultiLinearAttention(G; Q, K, V) = SplitConcat\left(\frac{1}{h} * (T_1 + \dots + T_h)\right)W^{O}$$

where $T_j = Attention_{TD}(G_j; QW^q, KW^K, VW^V)$

Parameters Sharing

Multi-Linear Attention

Experimental Results in Language Modeling

	_							
			Model		Params	Test P	PL	
	One-Billion	RNN-1	1024+9 Gra	am [4]	20B	51.3		
		LSTN	1-2018-512	2 [17]	0.83B	43.7	1	
		GCNN-14 bottleneck [8]		_	31.9)		
		LSTM-8192-1024+CNN Input [17]			1.04B	30.0)	
		High-Budget MoE [31]			5B	28.0)	
		LSTM+Mos [36]			113M	37.1	D	
		Transform	Transformer+adaptive input [1]			23.7		
		Transformer-XL Base [7]			0.46B	23.5	í	
		Transformer-XL Large [7]			0.8B	21.8	<u>.</u>	
		Tensorized Transformer core-1			0.16B	20.5	í	
		Tensorized Transformer core-2		0.16B	19.5	í		
	Model		РТВ				WikiText-	103
	mouel		Params	Val PPL	Test PPL	Params	Val PPL	,]
	LSTM+augmented loss [15]		24M	75.7	48.7	_	_	4
	Variational RHN [38]		23M	67.9	65.4	_	_	4
	4-layer QRNN [21]		_	_	_	151M	_	3
PTB	AWD-LSTM-MoS [36]		22M	58.08	55.97	_	29.0	2
	Transformer+adaptive input [1]		24M	59.1	57	247M	19.8	2
	Transformer-XL	[7]	24M	56.72	54.52	151M	23.1	2

57.9*

60.5

54.25

55.4*

57.9

49.8

18 M

12M

12M

Transformer-XL+TT [18]

Tensorized Transformer core-1

Tensorized Transformer core-2

WikiText-103

Test PPL

48.7 45.2 33.0

29.2 20.5

24.0

20.9

18.9

25.70*

23.61*

22.7

19.7

130M

80.5M

86.5M

Experimental Results in Language Modeling

WMT-16 English-to-German

Model	Params	BLEU
Base-line [30]	_	26.8
Linguistic Input Featurec [29]	_	28.4
Attentional encoder-decoder + BPE [30]	_	34.2
Transformer [34]	52M	34.5*
Tensorized Transformer core-1	21M	34.10
Tensorized Transformer core-2	21.2M	34.91

Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for wmt 16.arXiv preprint arXiv:1606.02891, 2016.

Conclusion

- We provided a novel self-attention method, namely Multi-linear attention.
- The Tensorized Transformer model combines two compression ideas, parameters sharing and low-rank decomposition.
- Our methods achieve higher compression ratio and better experimental results in language modeling.
- The Tensorized Transformer model can be implied to more NLP tasks with limited resources through further optimization

Thanks!